cuvis_ai.unsupervised.sklearn_wrapped.GMM
- class cuvis_ai.unsupervised.sklearn_wrapped.GMM(n_components=1, *, covariance_type='full', tol=0.001, reg_covar=1e-06, max_iter=100, n_init=1, init_params='kmeans', weights_init=None, means_init=None, precisions_init=None, random_state=None, warm_start=False, verbose=0, verbose_interval=10)[source]
Bases:
Node
,BaseUnsupervised
,SklearnWrapped
- __init__(n_components=1, *, covariance_type='full', tol=0.001, reg_covar=1e-06, max_iter=100, n_init=1, init_params='kmeans', weights_init=None, means_init=None, precisions_init=None, random_state=None, warm_start=False, verbose=0, verbose_interval=10)
Methods
__init__
([n_components, covariance_type, ...])Check that the parameters for the input data data match user expectations
Check that the parameters for the output data data match user expectations
fit
(X[, warm_start])_summary_
forward
(X)Transform the input data.
load
(params, data_dir)Load from serialized format into an object
serialize
(data_dir)Convert the class into a serialized representation
set_fit_meta_request
(**kwargs)set_forward_meta_request
(**kwargs)Attributes
Returns the needed shape for the input data.
Returns the shape for the output data.
- check_input_dim(X)
Check that the parameters for the input data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- check_output_dim(X)
Check that the parameters for the output data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- fit(X: ndarray, warm_start=False)
_summary_
- Parameters:
X (Any) – Generic method to initialize a classifier with data.
- forward(X: ndarray)
Transform the input data.
Parameters: X (array-like): Input data.
Returns: Transformed data.
- get_fit_requested_meta()
- get_forward_requested_meta()
- property input_dim
Returns the needed shape for the input data. If a dimension is not important, it will return -1 in the specific position.
Returns: (tuple) needed shape for data
- property output_dim
Returns the shape for the output data. If a dimension is dependent on the input, it will return -1 in the specific position.
Returns: (tuple) expected output shape for data
- set_fit_meta_request(**kwargs)
- set_forward_meta_request(**kwargs)