cuvis_ai.node.node.Node
- class cuvis_ai.node.node.Node[source]
Bases:
ABC
Abstract class for data preprocessing.
Methods
__init__
()Check that the parameters for the input data data match user expectations
Check that the parameters for the output data data match user expectations
forward
(X)Transform the input data.
load
(params, serial_dir)Load from serialized format into an object
serialize
(serial_dir)Convert the class into a serialized representation
set_fit_meta_request
(**kwargs)set_forward_meta_request
(**kwargs)Attributes
Returns the needed shape for the input data.
Returns the shape for the output data.
- check_input_dim(X)[source]
Check that the parameters for the input data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- check_output_dim(X)[source]
Check that the parameters for the output data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- abstract forward(X)[source]
Transform the input data.
Parameters: X (array-like): Input data.
Returns: Transformed data.
- abstract property input_dim: tuple[int, int, int]
Returns the needed shape for the input data. If a dimension is not important, it will return -1 in the specific position.
Returns: (tuple) needed shape for data
- abstract load(params: dict, serial_dir: str) None [source]
Load from serialized format into an object
- abstract property output_dim: tuple[int, int, int]
Returns the shape for the output data. If a dimension is dependent on the input, it will return -1 in the specific position.
Returns: (tuple) expected output shape for data