cuvis_ai.node.node.Node

class cuvis_ai.node.node.Node[source]

Bases: ABC

Abstract class for data preprocessing.

__init__()[source]

Methods

__init__()

check_input_dim(X)

Check that the parameters for the input data data match user expectations

check_output_dim(X)

Check that the parameters for the output data data match user expectations

forward(X)

Transform the input data.

get_fit_requested_meta()

get_forward_requested_meta()

load(params, serial_dir)

Load from serialized format into an object

serialize(serial_dir)

Convert the class into a serialized representation

set_fit_meta_request(**kwargs)

set_forward_meta_request(**kwargs)

Attributes

input_dim

Returns the needed shape for the input data.

output_dim

Returns the shape for the output data.

check_input_dim(X)[source]

Check that the parameters for the input data data match user expectations

Parameters: X (array-like): Input data.

Returns: (Bool) Valid data

check_output_dim(X)[source]

Check that the parameters for the output data data match user expectations

Parameters: X (array-like): Input data.

Returns: (Bool) Valid data

abstract forward(X)[source]

Transform the input data.

Parameters: X (array-like): Input data.

Returns: Transformed data.

get_fit_requested_meta()[source]
get_forward_requested_meta()[source]
abstract property input_dim: tuple[int, int, int]

Returns the needed shape for the input data. If a dimension is not important, it will return -1 in the specific position.

Returns: (tuple) needed shape for data

abstract load(params: dict, serial_dir: str) None[source]

Load from serialized format into an object

abstract property output_dim: tuple[int, int, int]

Returns the shape for the output data. If a dimension is dependent on the input, it will return -1 in the specific position.

Returns: (tuple) expected output shape for data

abstract serialize(serial_dir: str) dict[source]

Convert the class into a serialized representation

set_fit_meta_request(**kwargs)[source]
set_forward_meta_request(**kwargs)[source]