cuvis_ai.transformation.torch_transformation.TorchTransformation
- class cuvis_ai.transformation.torch_transformation.TorchTransformation(function_name: str | None = None, *, operand_b: Any | None = None, **kwargs)[source]
Bases:
Node
,BaseTransformation
Node representing a transformation of data using a pytorch function.
- Parameters:
function_name (str,optional) – The name of the pytorch function to use. Almost any function available from the torch module can be used.
operand_b (Any,optional) – A constant value to pass into the function alongside the regular input data.
kwargs (Dict) – Any additional keyword arguments will be passed to the pytorch function anytime it is called.
Methods
__init__
([function_name, operand_b])check_input_dim
(X[, Y])Check that the parameters for the input data data match user expectations
check_output_dim
(X[, Y])Check that the parameters for the output data data match user expectations
forward
(X[, Y])Apply the pytorch method :arg:`function_name` on :arg:`X`. This node basically runs torch.<function_name>(X, Y).
load
(params, serial_dir)Load this node from a serialized graph.
serialize
(serial_dir)Serialize this node and save to :arg:`serial_dir`.
set_fit_meta_request
(**kwargs)set_forward_meta_request
(**kwargs)Attributes
Returns the needed shape for the input data.
Returns the shape for the output data.
- check_input_dim(X: Iterable, Y: Iterable | None = None)[source]
Check that the parameters for the input data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- check_output_dim(X: Any, Y: Any | None = None)[source]
Check that the parameters for the output data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- forward(X: ndarray, Y: ndarray | None = None)[source]
Apply the pytorch method :arg:`function_name` on :arg:`X`. This node basically runs torch.<function_name>(X, Y).
- Parameters:
X (np.ndarray) – The first operand for the pytorch method.
Y (np.ndarray, optional) – The second operand for the pytorch method.
- Returns:
Returns the result of the pytorch method and any additional labels or metadata passed along with :arg:`X`
- Return type:
Any, np.ndarray
- get_fit_requested_meta()
- get_forward_requested_meta()
- property input_dim: Tuple[int, int, int]
Returns the needed shape for the input data. If a dimension is not important, it will return -1 in the specific position.
Returns: (tuple) needed shape for data
- property output_dim: Tuple[int, int, int]
Returns the shape for the output data. If a dimension is dependent on the input, it will return -1 in the specific position.
Returns: (tuple) expected output shape for data
- serialize(serial_dir: str) str [source]
Serialize this node and save to :arg:`serial_dir`.
- set_fit_meta_request(**kwargs)
- set_forward_meta_request(**kwargs)