cuvis_ai.supervised.sklearn_wrapped.QDA
- class cuvis_ai.supervised.sklearn_wrapped.QDA(*, priors=None, reg_param=0.0, store_covariance=False, tol=0.0001)[source]
Bases:
Node
,BaseSupervised
,SklearnWrapped
- __init__(*, priors=None, reg_param=0.0, store_covariance=False, tol=0.0001)
Methods
__init__
(*[, priors, reg_param, ...])Check that the parameters for the input data data match user expectations
Check that the parameters for the output data data match user expectations
fit
(X, Y[, warm_start])forward
(X)Transform the input data.
load
(params, data_dir)Load from serialized format into an object
serialize
(data_dir)Convert the class into a serialized representation
set_fit_meta_request
(**kwargs)set_forward_meta_request
(**kwargs)Attributes
Returns the needed shape for the input data.
Returns the shape for the output data.
- check_input_dim(X)
Check that the parameters for the input data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- check_output_dim(X)
Check that the parameters for the output data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- forward(X: ndarray)
Transform the input data.
Parameters: X (array-like): Input data.
Returns: Transformed data.
- get_fit_requested_meta()
- get_forward_requested_meta()
- property input_dim
Returns the needed shape for the input data. If a dimension is not important, it will return -1 in the specific position.
Returns: (tuple) needed shape for data
- property output_dim
Returns the shape for the output data. If a dimension is dependent on the input, it will return -1 in the specific position.
Returns: (tuple) expected output shape for data
- set_fit_meta_request(**kwargs)
- set_forward_meta_request(**kwargs)