cuvis_ai.deciders.cascaded_decider.Cascaded
- class cuvis_ai.deciders.cascaded_decider.Cascaded[source]
Bases:
BaseDecider
Methods
__init__
()Check that the parameters for the input data data match user expectations
Check that the parameters for the output data data match user expectations
fit
(X)forward
(X)Predict labels based on the input labels.
load
(params, filepath)Load this node from a serialized graph.
serialize
(directory)Convert the class into a serialized representation
set_fit_meta_request
(**kwargs)set_forward_meta_request
(**kwargs)Attributes
Returns the needed shape for the input data.
Returns the provided shape for the output data.
- check_input_dim(X)
Check that the parameters for the input data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- check_output_dim(X)
Check that the parameters for the output data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- fit(X)
- forward(X: ndarray) ndarray [source]
Predict labels based on the input labels.
- Parameters:
X (array-like) – Input data.
- Returns:
Transformed data.
- Return type:
Any
- get_fit_requested_meta()
- get_forward_requested_meta()
- property input_dim
Returns the needed shape for the input data. If a dimension is not important, it will return -1 in the specific position.
Returns: (tuple) needed shape for data
- property output_dim
Returns the provided shape for the output data. If a dimension is not important it will return -1 in the specific position.
- Returns:
Provided shape for data
- Return type:
- set_fit_meta_request(**kwargs)
- set_forward_meta_request(**kwargs)