cuvis_ai.deciders.cascaded_decider.Cascaded

class cuvis_ai.deciders.cascaded_decider.Cascaded[source]

Bases: BaseDecider

__init__() None[source]

Methods

__init__()

check_input_dim(X)

Check that the parameters for the input data data match user expectations

check_output_dim(X)

Check that the parameters for the output data data match user expectations

fit(X)

forward(X)

Predict labels based on the input labels.

get_fit_requested_meta()

get_forward_requested_meta()

load(params, filepath)

Load this node from a serialized graph.

serialize(directory)

Convert the class into a serialized representation

set_fit_meta_request(**kwargs)

set_forward_meta_request(**kwargs)

Attributes

input_dim

Returns the needed shape for the input data.

output_dim

Returns the provided shape for the output data.

check_input_dim(X)

Check that the parameters for the input data data match user expectations

Parameters: X (array-like): Input data.

Returns: (Bool) Valid data

check_output_dim(X)

Check that the parameters for the output data data match user expectations

Parameters: X (array-like): Input data.

Returns: (Bool) Valid data

fit(X)
forward(X: ndarray) ndarray[source]

Predict labels based on the input labels.

Parameters:

X (array-like) – Input data.

Returns:

Transformed data.

Return type:

Any

get_fit_requested_meta()
get_forward_requested_meta()
property input_dim

Returns the needed shape for the input data. If a dimension is not important, it will return -1 in the specific position.

Returns: (tuple) needed shape for data

load(params: dict, filepath: str)[source]

Load this node from a serialized graph.

property output_dim

Returns the provided shape for the output data. If a dimension is not important it will return -1 in the specific position.

Returns:

Provided shape for data

Return type:

tuple

serialize(directory: str)[source]

Convert the class into a serialized representation

set_fit_meta_request(**kwargs)
set_forward_meta_request(**kwargs)