cuvis_ai.deciders.base_decider.BaseDecider
- class cuvis_ai.deciders.base_decider.BaseDecider[source]
Bases:
Node
,CubeConsumer
,ABC
Abstract class for Decision Making Nodes.
The decider nodes transform a prediction state into a final prediction based on the task that needs to be accomplished.
Methods
__init__
()Check that the parameters for the input data data match user expectations
Check that the parameters for the output data data match user expectations
fit
(X)forward
(X)Predict labels based on the input labels.
load
()Load from serialized format into an object
Convert the class into a serialized representation
set_fit_meta_request
(**kwargs)set_forward_meta_request
(**kwargs)Attributes
Returns the needed shape for the input data.
Returns the shape for the output data.
- check_input_dim(X)
Check that the parameters for the input data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- check_output_dim(X)
Check that the parameters for the output data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- abstract forward(X)[source]
Predict labels based on the input labels.
- Parameters:
X (array-like) – Input data.
- Returns:
Transformed data.
- Return type:
Any
- get_fit_requested_meta()
- get_forward_requested_meta()
- abstract property input_dim: tuple[int, int, int]
Returns the needed shape for the input data. If a dimension is not important, it will return -1 in the specific position.
Returns: (tuple) needed shape for data
- abstract property output_dim: tuple[int, int, int]
Returns the shape for the output data. If a dimension is dependent on the input, it will return -1 in the specific position.
Returns: (tuple) expected output shape for data
- set_fit_meta_request(**kwargs)
- set_forward_meta_request(**kwargs)