cuvis_ai.deciders.base_decider.BaseDecider

class cuvis_ai.deciders.base_decider.BaseDecider[source]

Bases: Node, CubeConsumer, ABC

Abstract class for Decision Making Nodes.

The decider nodes transform a prediction state into a final prediction based on the task that needs to be accomplished.

__init__()[source]

Methods

__init__()

check_input_dim(X)

Check that the parameters for the input data data match user expectations

check_output_dim(X)

Check that the parameters for the output data data match user expectations

fit(X)

forward(X)

Predict labels based on the input labels.

get_fit_requested_meta()

get_forward_requested_meta()

load()

Load from serialized format into an object

serialize()

Convert the class into a serialized representation

set_fit_meta_request(**kwargs)

set_forward_meta_request(**kwargs)

Attributes

input_dim

Returns the needed shape for the input data.

output_dim

Returns the shape for the output data.

check_input_dim(X)

Check that the parameters for the input data data match user expectations

Parameters: X (array-like): Input data.

Returns: (Bool) Valid data

check_output_dim(X)

Check that the parameters for the output data data match user expectations

Parameters: X (array-like): Input data.

Returns: (Bool) Valid data

fit(X)[source]
abstract forward(X)[source]

Predict labels based on the input labels.

Parameters:

X (array-like) – Input data.

Returns:

Transformed data.

Return type:

Any

get_fit_requested_meta()
get_forward_requested_meta()
abstract property input_dim: tuple[int, int, int]

Returns the needed shape for the input data. If a dimension is not important, it will return -1 in the specific position.

Returns: (tuple) needed shape for data

abstract load() None[source]

Load from serialized format into an object

abstract property output_dim: tuple[int, int, int]

Returns the shape for the output data. If a dimension is dependent on the input, it will return -1 in the specific position.

Returns: (tuple) expected output shape for data

abstract serialize()[source]

Convert the class into a serialized representation

set_fit_meta_request(**kwargs)
set_forward_meta_request(**kwargs)