cuvis_ai.deciders.binary_decider.BinaryDecider
- class cuvis_ai.deciders.binary_decider.BinaryDecider(threshold: float = 1.0)[source]
Bases:
BaseDecider
Simple decider node using a static threshold to classify data.
- Parameters:
threshold (Any) – The threshold to use for classification: result = (input >= threshold)
Methods
__init__
([threshold])Check that the parameters for the input data data match user expectations
Check that the parameters for the output data data match user expectations
fit
(X)forward
(X)Apply binary decision on input data.
load
(params, filepath)Load this node from a serialized graph.
serialize
(directory)Convert the class into a serialized representation
set_fit_meta_request
(**kwargs)set_forward_meta_request
(**kwargs)Attributes
Returns the needed shape for the input data.
Returns the provided shape for the output data.
- check_input_dim(X)
Check that the parameters for the input data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- check_output_dim(X)
Check that the parameters for the output data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- fit(X)
- forward(X: ndarray) ndarray [source]
Apply binary decision on input data.
Paramaters
- Xnp.ndarray
Input data as numpy array
- returns:
Classified input data. Where the datapoints are False if smaller than the threshold or True if larger or equal.
- rtype:
np.ndarray
- get_fit_requested_meta()
- get_forward_requested_meta()
- property input_dim
Returns the needed shape for the input data. If a dimension is not important it will return -1 in the specific position.
- Returns:
Needed shape for data
- Return type:
- property output_dim
Returns the provided shape for the output data. If a dimension is not important it will return -1 in the specific position.
- Returns:
Provided shape for data
- Return type:
- set_fit_meta_request(**kwargs)
- set_forward_meta_request(**kwargs)