Source code for cuvis_ai.utils.visualize


import numpy as np

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import proj3d

from sklearn.decomposition import PCA as sk_pca

[docs] def visualize_image(preds: np.ndarray, title='Empty'): plt.imshow(preds, cmap='viridis') # You can choose any colormap you like plt.colorbar() plt.title(title) plt.axis('off') plt.show()
[docs] def visualize_features(data: np.ndarray,labels=None, title='Empty'): # compress down to 3 max dimensions n_comps = max(3, data.shape[2]) n_pixels = data.shape[0] * data.shape[1] image_2d = data.reshape(n_pixels, -1) pca = sk_pca(n_components=n_comps) pca.fit(image_2d) compressed = pca.transform(image_2d) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(compressed[:,0], compressed[:,1], compressed[:,2], c=labels) plt.title(title) plt.axis('off') plt.show()