cuvis_ai.distance.distance.ECS
- class cuvis_ai.distance.distance.ECS(wavelengths: ndarray | list, ref_spectra: list = [])[source]
Bases:
AbstractDistance
Euclidean Distance of Cumulative Spectrum (ECS)
- Parameters:
AbstractDistance (AbstractDistance) – Defines the node as AbstractDistance node type
- __init__(wavelengths: ndarray | list, ref_spectra: list = [])[source]
Initialize an ECS distance node.
Methods
__init__
(wavelengths[, ref_spectra])Initialize an ECS distance node.
Check that the parameters for the input data data match user expectations
Check that the parameters for the output data data match user expectations
fit
(X)forward
(X[, ref_spectra])Pass the data through comparative function
load
(params[, filepath])Load dumped parameters to recreate the distance object
score
(data, ref_spectra)Score new datacubes against reference spectra.
serialize
(working_dir)Convert distance node to serializable format
set_fit_meta_request
(**kwargs)set_forward_meta_request
(**kwargs)spectra_to_array
(ref_spectra)Convert list of spectra to a numpy array
Attributes
Return the required input dimension
Get required output dimension
- check_input_dim(X)
Check that the parameters for the input data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- check_output_dim(X)
Check that the parameters for the output data data match user expectations
Parameters: X (array-like): Input data.
Returns: (Bool) Valid data
- fit(X)
- forward(X: ndarray, ref_spectra: list | None = None) ndarray
Pass the data through comparative function
- Parameters:
X (np.ndarray) – Input data.
ref_spectra (list, optional) – List of spectra to compare against
- Returns:
Distance maps for each of the reference spectra.
- Return type:
np.ndarray
- Raises:
ValueError – Mismatch in input data and reference spectra provided on function call.
ValueError – Mismatch in input data and reference spectra provided on node initialization.
ValueError – No reference spectra provided in init or on forward function pass.
- get_fit_requested_meta()
- get_forward_requested_meta()
- property input_dim: list
Return the required input dimension
- Returns:
Required input shape, which can vary in datacube height and width, but must be of consistent channel size.
- Return type:
- load(params: dict, filepath: str | None = None)
Load dumped parameters to recreate the distance object
- property output_dim
Get required output dimension
- Returns:
List defining which input dimensions should be checked in graph.
- Return type:
- score(data: ndarray, ref_spectra: ndarray) ndarray [source]
Score new datacubes against reference spectra.
- Parameters:
data (np.ndarray) – Input data.
ref_spectra (np.ndarray) – Reference spectra to compare against.
- Returns:
Distance scores
- Return type:
np.ndarray
- set_fit_meta_request(**kwargs)
- set_forward_meta_request(**kwargs)